

Available online at www.sciencedirect.com

Tetrahedron Letters 45 (2004) 2779-2781

Tetrahedron Letters

Synthesis of L-aminohomohistidine (L-Ahh)

Manuel Friedel and Thomas Lindel*

Ludwig-Maximilians-Universität, Department of Chemistry, D-81377 Munich, Germany

Received 22 January 2004; revised 5 February 2004; accepted 6 February 2004

Abstract—A short synthesis of L-aminohomohistidine (L-Ahh) is described, which starts from readily available δ -hydroxy-L-lysine. The embedding of the basic guanidino moiety in the aromatic imidazole lowers the basicity of the side chain to a p K_a of 8.3. It is proposed that L-Ahh may be employed as an arginine-mimetic in medicinal chemistry. © 2004 Elsevier Ltd. All rights reserved.

1. Introduction

The guanidinium group occurs in the side chain of the proteinogenic amino acid L-arginine (1, Scheme 1) and is involved in many physiological and pathophysiological processes. Peterlin-Mašič and Kikelj have compiled a comprehensive review on arginine-mimetics for which there is a constant demand.¹ Enzymes with a preference for guanidinium groups include trypsin-like serine proteases,² for example, thrombin, factor Xa, trypsin, many integrin receptors,³ and NO synthases.⁴ Interactions with the guanidinium moiety are mediated by the carboxylate groups of the side chains of aspartic or glutamic acid.

Scheme 1. Structures of L-arginine (1), L-aminohomohistidine (2, L-Ahh), and oroidin (3) sharing an agmatin partial structure.

At physiological pH guanidinium groups are protonated. Their high pK_a -value and polarity hamper their therapeutic use due to poor bioavailability after peroral application.¹ Options to circumvent this problem include the use of aminopyrimidine, benzamidine,⁵ or amidinohydrazone⁶ moieties, among others.

It may be worthwhile to analyze natural products in this respect. The guanidino motif of the marine pyrrole–imidazole alkaloid oroidin (3) is embedded in a 2-amino-imidazole moiety, with the interesting consequence of exhibiting a pK_a -value lowered by about four magnitudes.^{7,8} The aromaticity of the imidazole ring overwhelms the basicity of a free guanidino group.

2-Aminoimidazoles have only rarely been considered as guanidinium mimetics.

The free amino acid L-aminohomohistidine (2, L-Ahh) has, surprisingly, not been described, yet.⁹ In this paper we report a short synthesis and the determination of the pK_a -values of L-Ahh (2), which should prove useful as an arginine-mimetic in medicinal chemistry. Formally, one additional carbon atom (C-4, Scheme 1) is introduced into the structure of arginine.

2. Results and discussion

Our synthesis has the advantage of making use of the widely available, nonproteinogenic amino acid (5S)-hydroxy-L-lysine (4), which can be obtained from collagene in large scale.¹⁰ Moreover, it follows one of the proposals on the biogenesis of oroidin (3), which may

Keywords: Amino acids; Aminoimidazoles; Arginine-mimetic; Bioisosteres; Medicinal chemistry.

^{*} Corresponding author. Tel.: +49-89-2180-77733; fax: +49-89-2180-77734; e-mail: thomas.lindel@cup.uni-muenchen

involve homoarginine, which in turn is derived from lysine. 7b,11

In principle, differentiation between the α - and ε -amino groups had to be achieved. Initially, we made use of the protecting copper complexation of the α -amino group,¹² which was applied for the particular case of (5*S*)hydroxy-L-lysine (4) by Kihlberg and co-workers.¹³ It was indeed possible to subsequently achieve regioselective ε -amidinylation to the guanidino compound 5. However, it turned out to be difficult to then oxidize the secondary alcohol moiety.

Interestingly, the regioselective amidinylation of the ε -amino group was possible as soon as the secondary alcohol had been oxidized to the ketone. Our synthesis of **2** starts with the reaction of **4** with thionylchloride in dry methanol, followed by conversion of the resulting ester into the twice Boc-protected derivative **6** with Boc₂O in aqueous solution (82% overall yield, Scheme 2). Oxidation of **6** under Swern conditions led to ketone **7** (72% yield).

Ketone 7 can be converted to L-Ahh (2) by two different means. Boc-deprotection of 7 with aqueous HCl in EtOAc or CH_2Cl_2 followed by reaction with cyanamide at pH 4.5 in aqueous solution led to L-Ahh (2) in 89% overall yield.¹⁴ Alternatively, amidinylation of Boc-deprotected ketone 7 with the pyrazole 8^{15} at room tem-

perature (4 d), followed by chromatography on silica gel with *n*-BuOH/H₂O/AcOH (3:1:1) afforded L-Ahh (**2**) in 71% overall yield. In both cases, regioselective amid-inylation of the ε -amino group takes place making the differential deprotection of the amino groups unnecessary. The synthesis of L-Ahh (**2**)¹⁶ was accomplished in five steps with an overall yield of 53%, respectively, 42%.

The pK_a -values of L-Ahh (2) will be of key importance to its further use. Titration of a solution of 2 in 0.02 N HCl with 0.1 N NaOH led to the identification of four pK_a -values, which can be assigned as shown in Scheme 3. The first pK_a value of L-Ahh (2) (pK_{a1} 2.5, Scheme 3) corresponds well to the first pK_a -value of arginine $(pK_{a1} 2.2)^{17}$ and is associated with the deprotonation of the carboxylic acid moiety. The pK_{a2} value of 6.0 corresponds to the loss of the imidazolium N-H and is in good accordance with the pK_a of substituted imidazolium cations as in histidine $(pK_a 6.0)$.¹⁷ The pK_{a4} of the α -amino moiety in **2** is 9.6 compared to a p K_a of 9.04 in arginine.¹⁷ As the major difference to arginine, the monoprotonated side chain of **2** possesses a pK_{a3} of 8.3 compared to a pK_a of 12.48 of the guanidinium moiety of arginine. Comparison with other aminoimidazoles shows that pK_a values of aminoimidazolium cations usually range between 8 and 9, which is in good accordance with our results.⁶ The isoelectric point of 2 was determined to be at pH = 8.97, compared to the isoelectric point of arginine at pH = 10.76.¹⁷

In summary, we have developed a convenient synthetic access to the unknown amino acid 2-aminohomohistidine as an analog of arginine. The protocol can be run with only two work-ups. Investigations concerning the incorporation of L-Ahh (2) as a bioisostere in argininecontaining biologically active compounds are currently under way.

Scheme 2. Synthesis of L-Ahh (2).

Acknowledgements

We would like to thank Prof. Dr. Karlheinz Drauz and Dr. Franz-Rudolf Kunz from Degussa AG for the generous supply of (5S)-hydroxy-L-lysine and for the determination of the pK_a -values. We also thank the Fonds der Chemischen Industrie for financial support.

References and notes

- Peterlin-Mašič, L.; Kikelj, D. Tetrahedron 2001, 57, 7073– 7105.
- Leung, D.; Abbenante, G.; Fairlie, D. P. J. Med. Chem. 2000, 43, 305–341.
- Haubner, R.; Finsinger, D.; Kessler, H. Angew. Chem., Int. Ed. 1997, 36, 1374–1389.
- Alderton, W. K.; Cooper, C. E.; Knowles, R. G. Biochem. J. 2001, 357, 593–615, and references cited therein.
- For a leading reference, see: Lam, P. Y. S.; Clark, C. G.; Li, R.; Pinto, D. J. P.; Orwat, M. J.; Galemmo, R. A.; Fevig, J. M.; Teleha, C. A.; Alexander, R. S.; Smallwood, A. M.; Rossi, K. A.; Wright, M. R.; Bai, S. A.; He, K.; Luettgen, J. M.; Wong, P. C.; Knabb, R. M.; Wexler, R. R. J. Med. Chem. 2003, 46, 4405–4418.
- Soll, R. M.; Lu, T.; Tomczuk, B.; Illig, C. R.; Fedde, C.; Eisennagel, S.; Bone, R.; Murphy, L.; Spurlino, J.; Salemme, F. R. *Bioorg. Med. Chem. Lett.* 2000, 10, 1–4.
- Reviews on the pyrrole–imidazole alkaloids: (a) Al Mourabit, A.; Potier, P. *Eur. J. Org. Chem.* 2001, 237–243; (b) Hoffmann, H.; Lindel, T. *Synthesis* 2003, 1753–1783.
- Storey, B. T.; Sullivan, W. W.; Moyer, C. L. J. Org. Chem. 1964, 29, 3118–3120.

- (a) Patent claims on derivatives: Conolly, C.; Doherty, A. M.; Hamilton, H. W.; Patt, W. C.; Sircar, I. (Warner-Lambert Co., USA). Eur. Pat. Appl. EP 399556, 1990; (b) Haik, G. M., Jr. (Redox Inc., USA.). PCT Int. Appl. WO 9717081, 1997; (c) Haik, G. M., Jr. (Redox Inc., USA). PCT Int. Appl. WO 9851260, 1998.
- 10. (5S)-Hydroxy-L-lysine (4) is also commercially available. 11. Lindel, T.; Hochgürtel, M.; Assmann, M.; Köck, M. J.
- Nat. Prod. 2000, 63, 1566–1569.
- 12. Schwyzer, R.; Rittel, W. Helv. Chim. Acta 1961, 44, 161.
- Broddefalk, J.; Bäcklund, J.; Almqvist, F.; Johansson, M.; Holmdahl, R.; Kihlberg, J. *J. Am. Chem. Soc.* **1998**, *120*, 7676–7683.
- 14. Lancini, G. C.; Lazzari, E. J. Heterocycl. Chem. 1966, 3, 152–154.
- (a) Bernatowicz, M. S.; Wu, Y.; Matsueda, G. R. *Tetrahedron Lett.* **1993**, *34*, 3389–3392; (b) Bernatowicz, M. S.; Wu, Y.; Matsueda, G. R. J. Org. Chem. **1992**, *57*, 2497–2502.
- 16. Selected physical and spectroscopical data of L-Ahh (2): Mp 184 °C (decomposition). $[\alpha]_{26}^{365}$ +37.2 (c = 5 mg/mLin MeOH). UV–vis (CH₂Cl₂): $\lambda_{max}(\varepsilon) = 266 \text{ nm}$ (496 mol⁻¹ dm³ cm⁻¹). IR (KBr): $\tilde{\nu} = 3402$ (s), 2533 (w), 1678 (s), 1635 (s), 1420 (w), 1210 (w), 541 (m). ¹H NMR (400 MHz, D₂O): $\delta = 6.51$ (s, 1H, CCHNH), 3.96 (t, ³J = 6.18 Hz, 1H, CHCH₂), 2.67–2.59 (m, 2H, CH₂CH₂C), 2.23–2.06 (m, 2H, CHCH₂CH₂). ¹³C NMR (100 MHz, D₂O): $\delta = 71.8$ (1C, CO₂H), 146.7 (1C, NCNN), 125.0 (1C, NCCH), 109.7 (1C, CCHNH), 52.0 (1C, CHCH₂), 28.5 (1C, CH₂CH₂C), 20.0 (1C, CHCH₂CH₂). MS (FAB): m/z = 185 [M+H]⁺. HRFABMS C₇H₁₂N₄O₂[M+H]⁺: calcd 185.1039; found 185.1026.
- 17. Lide, D. R. *Handbook of Chemistry and Physics*, 76th ed.; CRC: Boca Raton, 1995; p 7-1.